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Twelve hours after a large quantity of paler urine was
passed, in which not a trace of either salt injected was
discovered.

Forty-eight hours after the dog had been first injected it

was killed.

There were about two ounces of bloody serum in the
abdomen.

Not a trace of iron or potash were found in this serum or

in any of the tissues.

No Prussian blue in the thoracic duct or elsewhere.

Experiment 4. —Injected one and a-half ounce of warm
saturated solution of ferrocyanide of potassium beneath the

skin of the back of a large clog. Some hours after urine was
voided, containing abundance of the salt injected. This upon
evaporation yielded yellow crystals. No trace of blue.

Experiment 5. —Saturated some hiunan urine with ferro-

cyanide of potassium. On evaporation ciystals, as in the last

experiment. No blue colour.

It thus appears that when iron is introduced into the system,

it passes ofi" by the kidneys in combination with some
other constituent, from which it is only separated by heat,

when, if the ferrocyanide of potassimn is present, prussian

blue is immediately formed. It does not appear that the

feiTocyanide of potassium is in any other state than solution.

Neither of the salts were ever detected in the feeces ; the
same is true of the aniline dyes.

It is known that ferrocyanide of potassimn, by exposure,

assumes a blue tint, yet is still crystalline. Experiments 4
and 5 were instituted to see if, by the process of evaporation,

a similar colour could be produced, so as to cause a doubtftil

result. They prove clearly the presence in Experiments 1,

2, and 8, of a far larger amount of iron than is contained in

any ferrocyanide, sufficient indeed to produce the well-

known amorphous prussian blue of commerce.
Whilst these experiments show no such combination takes

place within the body, still they reveal the presence of a salt

in the blood, chyle, and urine, which upon evaporation at

ordinary temperatures appears as minute bright blue

crystals.
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Art. YI. —On Differential Equations and on Co-resolvents.

By the Hoxourable Chief Justice Cockle, F.R.S.,

President of the Queensland Philosophical Society, &c.

Communicated by the Honourable Sir RedmondBarry,

Chancellor of the University of Melbourne, &c.

[Read 11th June, 1866.]

§ 1. On Differential Equations.

1. I propose to show that any linear differential equation
whatever can be deprived of its second and third terms
simultaneously, provided that we are at liberty to assume
the solution of the general linear differential of the second
order ; or, in other words, that the annihilation of the
second and third terms of any linear differential equation
may be made to depend upon the solution of a linear differ-

ential equation of the second order. This is the analogue of
the proposition that the second and third terms of an alge-

braical equation may be made to vanish simultaneously by
means of the solution of a quadratic only.

2. Since any linear differential equation can be deprived
of its second term by solving a linear differential equation

of the first order only, we are at liberty to start from the

equation of the third order

—

fl^ + ^rjy + sy = - -(a)
dx^ dx ^ ^ ^

3. Now, inasmuch as the complexity of the formulae ren-

ders it necessary, or at all events desirable, to abridge the
notation as much as possible, I shall have recourse to the
following abbreviations. I shall denote differentiations

with respect to the variable x by acute accents ('), and
differentiations with respect to a new independent variable

t by grave accents ('). Thus I shall wiite

—

^ = y, p, = y", pi = r. &c.dx ^ ' dx^ ^ ' dx^ ^ '

dt - y^ dt^ - y
' dt^ - y

'

^^'

The letters r and s in equation (a) denote any constants or

any functions of x, the multiplier ' 3
' being prefixed to r
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for convenience only. In the abridged notation (a) will be
wi'itten

y"' + ^Ty + sy = - - - (h)

4. Change the dependent variable fi'om y to Y where y
and Y are connected by the relation

y = uY - - - -(c)

proceeding as follows :

—

y"' = (u Y)"' = u T" + 3 ii' Y' + 3 u' F + vJ" F,

3 r 2/' = 3 r (^^ F)' = Zr%iY'-\-Zrv!Y

sy = s (u Y) = suY
whence, bearing in mind the relation (6),

uY'"-{-S ii' Y" + 3 {%f + r II) Y' + (u'" + 3 r ^6' + s iC) 7= - (cQ

or, dividing by ii,

F-+ si^LF^ + SpJl' + J Y'^{~ ^-'^T~-\-^\ F=0 - (e)
u \\i ) \ %i u J

5. Next change the independent variable from o^ to ^ and

fd t\
^

we find, after dividing by I -y— I or (ty, that (e) becomes,

if we confine, for a moment, the change to F', Y'\ and Y'/'

where F (u, x, t) is a function which it is not at present

necessary to develope.

6. Hence, one of the conditions of the proposed transfor-

mation being that the second term of (/) should disappear,

or, what amounts to the sa,me thing, that the co-efficient of

Y" should vanish, we have, first,

—. X V — - - - - iq)
10 x^

^^^

which reduces to

^-%=0 (/.)
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of which equation a first integral is

u= Cx' @
whence follow

u' = Cx'\ u" = Cx''\ &c. - - (j,k. .)

7. Our next object is to eliminate u from the co-efficient

of T', and for this purpose we deduce at once from (g) the

relation

u _ X
Q)

moreover

lb'' ( iC" x'' , ^ 1 , .

%L \ (xY (ccy

^ {xy {xy
(n)

as we see from inspecting (i) and (j, k, .
.

). Hence the co-

officient of Y' in (/) becomes, on substitution,

and reducing this expression and equating the result to zero

we find, as the second condition of the proposed transfor-

mation.
^^N 2

an equation connecting x and t directly.

8. It remains to be proved that (o) is reducible to a linear

difierential equation of the second order. To this end, let

x' =2^ - - - - - - - 0^)

and consequently

x'' = p' = 2^' -p -
^

- - ' - (g)

and also

aj"^ = 2^ = 2f . p2 4 (jyy . iJ - - -
.

(r)

then (o) becomes, after substitutions,

2^9 1/ + 2 Qy)2 —3 {p'y + 3 r^^^ ^ q.
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and; on reduction,

^Vlf—{j>'f+^r2J^ = 0- - - - (s)

Now divide this result by p^ and we have

or

^iii^)+(?r-^«-« - -(^0
2^ J V p

and if we make

^ = 2v - - - - ^ (v)

then (u) becomes, on dividing by 4

dv . 0.3
cZa. + ^'+i^' = ^ - - -

('')

whence also

'''''' u>^ + l^-]-'^
- - («=)

or, making e^"''' = iv, - (2/)

cFw ,3
- (^)

a linear diiferential equation of the second order.

9. From (y) we deduce

1 d w , ^

IV a X ^ ^

and, combining this with (y) we find, on integration, &c.,

p = C2 ^v^ . . - . (ah)

whence, by (p),

fLi = 1 = -J_
dx p G2W^ " V ;

or

Wefind also, combining (i) and (p) and (a6) that

w —C G^ 10^ - - - - (ae)

which two constants are of course equivalent to one only.

N 2



180 On Differential Equations

10. The transformation thus indicated for the third order

is possible for equations of any order. For starting with
the equation, deprived of its second term and in which n is

greater than 3-,

we obtain by means of Mr. S. S. Greatheed's general for-

mulse for the change of the independent variable (in the

Cambridge Mathematical Journal, vol. i. pp. 236—8) the

following results, true for all values of n :

tT- a ^^ a ^ A- a ^^ -(b)

where

T.. { r d^t^^ rdf^y\^ fd''y\y ) , .

Mmeaning a multiple of the included quantities, and a, /3, 7,

&c, and X, ^ti, v, &c., being subject to the two relations

a + P -^ 7 + . . = p - - - (^)

aX+^lu + <^v+.. = n - - -(e)

11. Weare only concerned with the first three terms of

the transformed equation. For the first put p = n and
subtract (^) from (e). The result is

a (\— 1) + 13 i^—1) 4- 7 (v—l) 4- . . , = - (r)

of which, since a, &c., and X, &c., are to be integers, the

only available solutions are

\ = 1, ^ = 1, ^ = 1, . . . a = 1, y3 = 1, 7 = 1, . . .

consequently

^^-^{ Idx) j - - - w
Next, let p=n —1, then subtracting as before

a (X—l) + ^ (/a—l) + 7 (v—l) + . . . = 1 - (^)

the only available solutions .of which are of the form

X = 2, /i = 1, I. - 1, . . a = 1, /3 = 1, 7 = 1, . . .

so that

.^(dHfdt^^'-^X ..

^^-^ = ^\dx^ idx) j - - W
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Again, when 2^=?^ —2, we have, subtracting as before, the

condition

a (X—l) + (3 (/t— 1) + 7 (''—I) -^ ... - 2 - (.-)

of which the only available solutions are of the forms

\ = 3, ju. = I, V = I, p = 1, . . a = 1, /3 = 1, . . .

and
\ = 2, /a = 2, i^ = I, p = I, , . a = 1, fi

= I, . . ,

Hence

and we see that the conditions for the annihilation of the

second and third terms of an equation of any order will not

essentially differ from those for equations of the third order

already discussed.

The forms of the conditions also show that the simul-

taneous destruction of the second and rth terms of a linear

differential equation of any order may be made to depend
upon the solution of equations of the first and 7'th order :

and thus far the analogy between algebra and the calculus

holds —to a cei-tain extent at least, I have not ascertained

whether the resulting equation in the case of r being greater

than 2 can be made linear.

12. The sinister of a linear (or simple) algebraical equa-

tion whose dexter is zero may be reduced to a single term
by an easy transformation, and the sinister of a linear

differential equation of the first order whose dexter is zero

possesses the analogous property that, being multiplied into

an appropriate factor, it may be reduced to the form of a
perfect differential coefficient. Wewill now inquii'e whether
the analogy between algebra and the differential calculus

holds in the case of the next degree and order. And in so

doing it will no longer be necessary for me to adhere to the
abridged notation so conducive to the perspicuity of fore-

going results and to the manageability of the formulae in-

volved in them. I proceed to attempt the annihilation of

the last two terms of a linear differential equation of the
second order, and for a reason given in Article 2 I shall

start from the linear differential equation of the second
order

g + >-. = o - - - (1)
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the transformation of which has no analogue in the theory
of algebraical equations, inasmuch as a quadratic cannot be
deprived of its second and last terms simultaneously. We
shall thus see whether there is any instance in which the
analogy fails to hold between algebra and the differential

calculus.

13. To effect the proposed transformation of (1) I change
the independent variable from ^ to ^ and, at the same time,

the dependent variable from y to F, the relation

2/ = uF - - - - (2)

subsisting between y and Y. The result of these changes is

to transform (1) into

d?(uY) fdt\^ diuY) (dt\^ cT'x
^

, .^, ^ ,^.

df \dxj dt \dx) dP ^ ^ ^ ^

or

cZ^ (u Y) d t d^x d (u Y) fdxV y.
dt'' dx'dt' ' dt ^ ^^ [dtj ^^ ^^

] 4. Developing, we have

d^ (u Y) _ d^
. 9 l!^ ^ F d'u

df -^ dt'
'^ dt ' dt '^ df

dt d^x d(uY) dt d^x dY du dt d^x ^j.

dx dt'' dt dx df dt d t dx dt?'

(dx-)^
, ^^. rd x']

Hence, (4) ma}^, after division by it, be replaced by

dTY
f2

du_dt d'x^ dY
df "^ [u dt dx' dt') dt

f 1 d'u 1 du d t d' X c d x^^ ^ y ^
'^[il' dt'~u'~di'dx' IW^ ^\~di] j

15. Hence the conditions of the transformation are

(5)

2 du dtd}x_^ .p.

udtdxdt'~
and

1 d'u 1 du d t d' X ( ^^'^Y —o V'7^

1j/ ~d¥~~Tc"dl' dx' df'^'^^ [~dt) ~ ' ^^

which equations I proceed to solve.
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16. From (6), that is to say from

cl}x

If. dt ~ clx

~dt

we deduce by integration

iog.(..»)=iog.{cr|f)
}

(8)

or

dt

and by differentiation

2_ dHi
u' df^ w

r d It ^

[-dt.)

d'x
d t'

d'x
dt^

d X

dt
dx

and (8) enables us to write (7) in the form

1 ^1:!^

It
' df 2f-

d^
dt

+ r
dx
dt

=

from which if we eliminate u by means of (8) and
obtain

d'x

dt'

J dx ^

dt

17. Nowassume

/ d^
' df

dx
dt

dx
dt p

whence

d^x
dJ'

dp
cTt

dp d^ X d^ p
P> and ^^3 = ;,-

dx^ ^''-^ &X}'Pd X -^

' dj P ax^ ' ^a X)

and eliminate t from (12). That equation becomes

d^p 1 dp
dx

3 (dp\''
, 2

4 Kdx )

(9)

(10)

-(11)

(10) we

(12)

-(13)

(lilo)

- (16)
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or, multiplying (1 6) into 4 and reducing

1 8. This equation is of the second order. It remains to

be shown that its solution depends upon that of a linear

equation of the same order. To this end divide it b}' p^ and
it becomes

2 ^_ 1 (dpy _^^ _ ,jg,

which is equivalent to

^^\l..dp\ + (l.p]\^r = .(19)dx \ p dx ) Kp dxj ^ ^

^ 9. Now if we put

1-^ = .. - ^ - .(20)
p dx ^ ^

then (19) becomes

2a^—+a^V^ + 4iT=0 - - -(21)
(Jj X

which if a =: 2 reduces to

. p^ + v^ + r = - - - (22)
di X

and so to

or (making

to

fh X J

d^ W
dx

+ r w = - - - - (23)

20. Now, retracing our st^ps, we see that (1) and (23) are

identical in form, and also that (compare article 9)
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whence, by equation (9),

u2=0^= GC.w'' - - - -(25)

and r . u = M%v (26)

Mbeing a constant. The analogy between the algebraical

and differential theories holds then thus far : the supposition

that u or, which is the same thing, ^u is known, is the same
as supposing that the solution of (1) the given equation, is

known, and consequently to effect the transformation we
have to encounter all the difficulties of solving the original

equation. The analogy fails thus far : if we can solve (1)

we can annihilate its final term. This failure of analogy
seems analogous to another failure of analogy between
quadratics and linear differential equations of the second
order : a quadratic may have equal roots, but there are two
arbitrary constants in the complete integTal of every linear

differential equation of the second order.

§ 2. On Co-resolvents.

21. The Theory of Co-resolvents originated in my "Sketch
of a Theory of Transcendental Roots," published in the Fhilo-
sophical Magazine for August, 1860. The subject of that

paper has since been pursued as well by myself as by Mr.
Harley, Professor Cay ley, Mr. Russell, Mr. Rawson, Mr.
Spottiswoode, and the lamented Boole. When two or more
conditions involving a quantity are simultaneously satisfied

by the same value of the quantity, those conditions, and
indeed that by which the value is determined, may be
termed " Co-resolvents," and one co-resolvent may sometimes
not inaptly be termed a ''resolvent" of another. The
co-resolvents may be 'algebraical resolvents,' or 'differential

resolvents,' or 'functional resolvents.' Thus the three

equations

y^—^y^'2x = - - (i)

S^(l-.^)J|-3^4^,^ = - (ii)

dct>{x) ^{^fl-x') ^

dx ^sfl—x'
- - (iii)

- i
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in the fii'st two of which y is to be taken to represent {po),

are co-resolvents. The first is the algebraical resolvent, the

second is the difterential resolvent, and the third is a func-

tional resolvent. If the variable x be not greater than

positive unity, or less than negative unity, the relation

^{x) = 2 sm.
I

^ - - (iv)

is a solution, and the only common solution, of the above

system of co-resolvents, while, on the other hand, all the

roots of (i) are solutions of (ii). The theory of co-resolvents

not only throws light on those of algebraical and of differ-

ential equations, but it enables us to make the solution of

whole classes of functional equations depend upon that of

alo^ebraical or of differential equations. The well-known

application of the theory of algebraical equations to the

solution of linear differential equations with constant coeffi-

cients, the analogies between the theories of algebraical and
differential equations pointed out by Libri and Lioiiville

and the communication between the two theories established

by Abel, when he explored the track upon which Euler had

entered, may give interest to the new communication be-

tween those theories opened by the method of co-resolvents.

22. Before proceeding to that development of the theory

which it is the object of this section to explain, I ought to

say that its present advanced state is, in no small measure,

attributable to Mr. Harley. That eminent mathematician, by
his earlier inquiries into the forms of the differential resolv-

ents of certain trinomial algebraical equations, obtained

results which not only excited attention at the time, but

which have also, to a great extent, determined the cuiTcnt

of subsequent research. Traces of Mi\ Harley 's investiga-

tions appear in almost every paper that has since been

published. His approach to the following theorem was
simultaneous with my own.

23. If u represent the ?7ith power of any root of the

algebraical equation
yn .j,yr_l^^() _ _ - (v)

then It, considered as a function of x, satisfies the linear

differential equation

\_Dfu-Y
\7Yi + rD '

^ ^—+ n-v a;« u = (vi)in J
^ '
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in which D is an operative symbol defined by

and the notation

\cCf = a (a —1) (a —2) . . (a —5 + 1) - (viii)

is adopted. This theorem is an extension of "Boole's pro-

position at pages 734 and 735 of the Philosophical Trans-
actions for 1864. If we make

T = n —1, x = e^

d_
cl e

'

then (vi) will become

and therefore regard D as representing the operation

\DYu+ D+——1 I 1 \e''^u = (ix)
•- -• L n n j ^n n J ^ ^

and so coincide with the equation given by Boole at the

pages cited.

24. As a second verification of this theorem let r = 1,

then (vi) becomes

1 .n _. ....>^_^^— ^n,.o__il
71—1

\mn ^^
rj) ^ ^ ^,^M J) ^ ^^ J aJ'^'i6=0 (x)

•- J
71

^ ^In n J
^ ^

which, when m= 1, becomes

W'y-i (^-^'^+ l)[r,- ,,
D+ n-l

J
«»2/=0 (xi)

or, which is the same thing,

which is the 7i-ary differential resolvent of

y'' —xy —1=0- - - (xiii)

Now if in (xii) we replace o) by —x, and afterwards, as be-

fore, substitute e^ for x, then (xii) becomes

which is the 7i-ary differential resolvent of

y'^ + xy —1=0 - - (xv)
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This result coincides ultimately with Boole's. For if in (xv)

we replace y by y~^ we have an equation employed by Boole

{ibid. p. 736) and if in (xiv) we replace 2/ by u we have its

n-sjry resolvent as given by him {ibid. p. 737).

25. If we make

Q= ^B -^— —1 - - - (xvi)
n n ^ ^

and

„ ^^ ('^ ^) ^ / --xH= ^ + n —r - (xvn)
n ^ '

the general theorem may conveniently be expressed as fol-

lows : —The 7i-ary, or Boolian differential resolvent of (v) is

[D]^ u —[(?]' \Hf-^ x''u = - (xviii)

26. I communicated the generalization of Boole's propo-

sition to Mr. Harley by the last October mail, together with
a verification —both verifications, I believe. By the last

December mail I received a letter from Mr. Harley, dated

Oct. 17, 1865, which therefore crossed my letter to him, and
in which he makes a very near approach indeed to the true

generalization : so near, indeed, that, inasmuch as the over-

sight into which he has fallen could not long have escaped

his notice, the generalization may be regarded as having
been independently made by me in Queensland, Australia,

and by him in England. By the last (February) mail I

received from Mr. Harley a letter dated Dec. 18, 1865, in

which he acknowledges my letter of the 18th Oct. and in

substance says that the true generalization is

[PY u —(—y-^ [Gf [J7]^-^ x''-^u = - (xix)

where

H = If —1 - - (xx)
n n ^ ^

Now, inasmuch as

^ ^—+n—r\ =\ D 1 (-1)«-^ (xxi)
Y n J in n \ ^ '' ^ '

the only real discrepancy between our results consists in the
different indices of x. Mr. Harley 's factor ' x'"'^ ' seems to

me erroneous, and neither to follow from the law of deri-

vation of a differential equation from a series, nor to agree



j (m, X) = -

that of

( 1 \''
- + X

r 1

1 2/

\ n-r

or, what is the same thing, of

(jj-^T + X iy-^y
i-r -\ =
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either with Boole's results or with obvious properties of the

?^-ary resolvent of the equation in y or y''^. If the general

n-SiYj resolvent of (v) be denoted by

(xxii)

= - (xxiii)

(xxiv)

will still be (xxii), for (xxiii) is but the result of the divi-

sion of (v) by 2/". Hence if in (xxiv) we replace y'^ by z

and xhy —x, we must replace "tnhj —"ni and cc by —x in

(xxii) in order to obtain the '?i-ary resolvent of

z'^ —xz''-^ —1=0 - - - (xxv)

that resolvent is, consequently,

/ (—m, —x) = - - - (xxvi)

mother words when, in (v) we change r into n —r the

index of x in the resolvent remains unaltered.

27. The demonstration of the generalized theorem is as

follows. Let

y'^ —xy^ —1 = - - (xxvii)

then by Lagrange's theorem, employed precisely as Boole

has done (ibid. p. 735), we find that u or 2/"* may be ex-

panded in a series of the form

Uq + UiX + u^x^ + &c. ad. inf.,

in wliich

\ m+ ar ^ f'^ /-.x
'-^

m —1 X (1) "

u^= r— - (xxvm)
n[TY

^ ^

and consequently

\ m+ ar ^ Y'^ /-.x^^
^^i

I —̂^ - 1
j

• (1)
^

[r]«U^= r- - (xxix)
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28. Changing r into r —'^ we have, from (xxviii),

m a —1 • (1)_ L n J
^ ^

Hence, dividing (xxix) by (xxx),

\ Tn + ar Y~^
[rYUy [ n J

But

\
on + ar y-n-u^

\m + aT y-n-i l^^^n^ _J
[^~n "~

J ~ [m+ar ^Y

\ m+ ccT Y'^
I n \ / -x= li— = (xxxi)

\7n + a7' ^I'^rm + ar Y~"
1 r + n —a

L ^1 J L ^ J

consequently

u^.n in \ I n J

or, making two obvious changes in the form of this result

r -,^ \m + a7' J'^Tm

—

(n —a)T Y'"" a
b'Y'^r—[-^ Ij [

^— l-+n—a]^ %-n =
(xxxii)

This equation corresponds to Boole's equation (6) (ibid. p.

736) which requires correction in two places and should
stand thus :

[r]" u„ + —̂ 1 I 1 u^_^ = (6)

29. Multiply both sides of (xxxii) into x^ and it becomes

\m + ar ^]«rm-(?^-a)r "|"-«
„

[r]-iv.a3-— j^— Ij
j^

^---^_ + ^_aj . a;". u,.„. «;*-»=

(xxxiii)
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[Df u, . cc^ -
j^— ^^

Ij
1^

\^^
^ + 7i-aj fc-. u,,„ . x^-^ =

(xxxiv)

Next, in (xxxiv), give to r all successive values from zero

to infinity and add the results : we find, since

Uq + Ui X + 11.2 x^ + &c. ad. inf. = u,

[Z)]n,,_f.!!l^_l ^:; —̂—+ n - a x"" u = (xxx v)

Hence if in (xx^di) we replace a by i' and, consequently,
make the same change in (xxxv) that last equation becomes

[Dfy^-y —^ Ij
[ \, ^ - n-T^^ x-u = - (vi)

and thus the theorem announced at the commencement of

Article 23 is established. The constant r which replaces

the constant a will not of course be confounded with the
variable integer 'r used in the investigations immediately
preceding.

Brisbane, Queensland, Australia,

March 16, 1866.

Abstract of the Addendum to Chief Justice Cockle's

Paper "On Differential Equations," &c., communi-
cated to Sir Redmomd Baery.

In an Addendum to the above paper, dated April 9th-

10th, 1866, Chief Justice Cockle gives a co-resolvent of a
third form of trinomial algebraic ec|uation undiscussed by
Mi\ Harley and the lamented Boole. After obtaining this

last co-resolvent by means of Laplace's theorem, the Chief
Justice gives a general theorem for the development of

functions of two mdependent quantities. Lagrange's the-

orem and Laplace's theorem are particular cases of this

general theorem.
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Addendum to the foregoing Paper.

Under date Oakwal, near Brisbane, April 9, 1866, Chief

Justice Cockle communicated to Sir Redmond Barry the

following additions to his Paper " On Differential Equations
and on Co-resolvents."

I. Wemay readily deduce a differential co-resolvent of

xy''—y^+z = 0, - - - - (a)

from which we obtain successively

y»=z + xy"" - - - - -(b)

y =z (z + a?2/«)« - - - . (c)

y'''= {z + xy'')^ - - - -(d)

Hence, by Laplace's theorem,

II. Now since the general term of the series for 7/"* is

m d'-'^ f ^ '»-i) X*-

a dz'-^X jl.2..r

or

m d"-^ ( ^^'1^-1 1 X''

a dz'-'-\ ) {rY

or, if we make z = l after the differentiations,

m\r 11 m ^
]''"^ x^

~^Vi: "^ a —J \rY

we may put

nfi\rn TYi

a I a a
r -,^ III, r lb . 'iru ^

>-i

(f)

and, consequently,

\r —a^u —— ^ '- 1
L ^ r-a a i a a J
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III. It foUows that

7)?/

[q^Y ^r = V a a -r
\vn

a a
] —n

But

[ r n
^

m ^-,
, ^^

ir-a-i ^ [ f^,

Ir-a-l
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(h)

J

[ r n m

a
(1 + n)

Ir-a-l + n

--y' n on

a a

\ T n m
I a a

In-a

J

J

\ rn ni ]"

[ a a J

(i)

and (h) becomes

[rfitr= -

\ rn m Y
[ a a J

[ 9' n ni

a J

«,-, (J)

IV. Proceeding as in the former pait of this paper we,

slightly changing the form of (j), infer that, since

[r]«
Cn —a) r m

a a
Ur

r n
,

7)1

. a a
1 "l^r-a = (k)

consequently that, as in a former case, the co-resolvent will

be

m (n —a) D . ni
u

nD
,

m -.1" „ ^ n^+ 1 x^'u = (1)
a a i

^ ^

in which last equation n represents y"\ This (1) is the co-

resolvent of (a) for the case of 2^1= 1. We may obtain it

for any value of by multiplying the last term of (1) into

z"''", for the exponent of z will be

r n , m ( ir —a) n , m—+ r — ^ '— + —
a a ^ a a

r + a n

Weshall thus give to the co-resolvent an extension equiva-
lent to that which Mr. Harley has sought to give to another

o
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result. I find that Mr. Harley's extension of the theorem
spoken of in the former part of this memoir is printed at

p. 199 of Boole's (posthumous) Supplementary Volume,
which reached me by the last (March) mail The extension
as there printed is erroneous to an extent which I have
already pointed out.

V. In general, let

^=/(2/) (J^)

y = f{iv) - - (n)

w=^ {az -\- hx)F{y) + {ax -\-hz)7r {y) -\- x (jj) (o)

in which x and are independent, and F, tt, and % are func-

tional symbols, and let it be required to expand u in a series

of ascending powers of x.

VI Put

(«. + ,.)^) + («.+ ,.)^-^H.'|x|^^
(P)

and we have

In like manner

and therefore, putting (q) and (r) under the forms

dy r^ TTdir(w)\ d^l^ (w) fj T^, . .0 ,

.

p(l-H ^^ 1 =^^ (aFiy) + b.{y)] (t)
dz V dw J dw K

^"^^
^"^V ^

^

and dividing (s) by (t) we have, after a slight reduction,

dy_^hF(y)-{-a7r(y)} dy
dx~\aF{y) + h7r{y)^ dz ' '

"
'

^
''

VII. For simplicity, divide both the numerator and deno-

minator of the bracketed factor of the dexter of (u) by F (y),

then (u) becomes

dx~\a-\-h(p(y)}dz~^^^^ dz ' "
" ^^
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where

t'^y^=Y§)
------ -(w)

and /* is a new functional symbol introduced for convenience.

VIII. Now

du du dy , .dib dy , .du
'drx^~d^j'i:^~^^'^^T^j'~dz~^^y^~d^. ' ^^^

d^ u d { , ^du) d ( ,^du] d { f , ^^^ du
dx^

d^u
d x^

and so on. For we know that

d f , .dib'\ d r , .du] d ( r . .^^du] . .

d d (f , .^^du] d' (f ,.\Hlu] ,,

d(yd^]d(ydv)
dx I dz } dz { dx )

where v is any function of the independent quantities x and
0, and V any. function of v.

IX. Next, denoting by a suffixed zero the value which a
function takes when x vanishes (for instance, denoting by
Kq the value of K when a; = 0) we have, by Maclaurin's

theorem,

.
cdii^ x

, rd^u\ ^^
, D / X

^ =-^» +
I d^J T + [-dUF) „

• O+ *"•
- (^^)

Hence, b}^ what has preceded,

, . duQ X . d f r . A^ duQ} x^ ,

a series whose general term is

X. "We have now to express Uq or f {y^) as a function of

z. For this purpose making x=--0 in (o) we deduce by
means of (m), (n) and (o)

Uo=f{yo)=ff('^o)=ftlcf^^F{yo) + hz7r(y^) -{- x(2/o)) (ac)

whence

t~' (2/0) —X (2/0)
== ^ (a i^ (2/0) + ^ ^ (2/o)j (ad)

o 2


